Resolution enhancement using plasmonic metamask for wafer-scale photolithography in the far field

نویسندگان

  • Seunghwa Baek
  • Gumin Kang
  • Min Kang
  • Chang-Won Lee
  • Kyoungsik Kim
چکیده

Resolution enhancement in far-field photolithography is demonstrated using a plasmonic metamask in the proximity regime, in which Fresnel diffraction is dominant. The transverse magnetic component of the diffracted wave from the photomask, which reduces the pattern visibility and lowers the resolution, was successfully controlled by coupling with the anti-symmetric mode of the excited surface plasmon. We obtained a consistently finely-patterned photoresist surface at a distance of up to 15 μm from the mask surface for 3-μm-pitch slits because of conserved field visibility when propagating from the near-field to the proximity regime. We confirmed that sharp edge patterning is indeed possible when using a wafer-scale photomask in the proximity photolithography regime. Our plasmonic metamask method produces cost savings for ultra-large-scale high-density display fabrication by maintaining longer photomask lifetimes and by allowing sufficient tolerance for the distance between the photomask and the photoresist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics.

Electromagnetic field localization in nanoantennas is one of the leitmotivs that drives the development of plasmonics. The near-fields in these plasmonic nanoantennas are commonly addressed theoretically within classical frameworks that neglect atomic-scale features. This approach is often appropriate since the irregularities produced at the atomic scale are typically hidden in far-field optica...

متن کامل

Comparative scanning near-field optical microscopy studies of plasmonic nanoparticle concepts

We use scanning near-field optical microscopy (SNOM) to characterize different plasmonic-nanoparticle situations with high spatial and spectral resolution in this comparative study. The near-field enhancement is measured with an aperture probe (Al coated glass fiber) and two CCD spectrometers for simultaneous detection of reflection and transmission. The images of transmission and reflection sh...

متن کامل

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Substrate-Independent Lattice Plasmon Modes for High-Performance On-Chip Plasmonic Sensors

We systematically study the lattice plasmon resonance structures, which are known as core/shell SiO2/Au nanocylinder arrays (NCAs), for high-performance, on-chip plasmonic sensors using the substrate-independent lattice plasmon modes (LPMs). Our finite-difference time-domain simulations reveal that new modes of localized surface plasmon resonances (LSPRs) show up when the height-diameter aspect...

متن کامل

Metamaterial Absorbers for Infrared Detection of Molecular Self-Assembled Monolayers

The emerging field of plasmonic metamaterials has introduced new degree of freedom to manipulate optical field from nano to macroscopic scale, offering an attractive platform for sensing applications. So far, metamaterial sensor concepts, however, have focused on hot-spot engineering to improve the near-field enhancement, rather than fully exploiting tailored material properties. Here, we prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016